Neuroprotection of S(+) ketamine isomer in global forebrain ischemia.

نویسندگان

  • M Proescholdt
  • A Heimann
  • O Kempski
چکیده

The non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine can block the action of excitotoxic amino acids in the central nervous system. S(+) ketamine has a 2-3 times higher anesthetic potency compared with the ketamine-racemate and also shows a higher neuroprotective efficacy in vitro. To determine the neuroprotective activity of S(+) ketamine compared with its R(-) stereoisomer in vivo, we examined the functional and neurohistological outcome in rats treated 15 min after global forebrain ischemia with S(+) ketamine in different dosages compared with R(-) ketamine. Influence of the treatment on regional cerebral blood flow (rCBF) and cortical oxygen saturation (HbO2) was monitored over 1 h after the ischemia using laser doppler flowmetry and microphotospectrometry respectively. Sixty and ninety mg/kg of S(+) ketamine but not R(-) ketamine significantly reduced neuronal cell loss in the cortex compared with the saline treated group. No significant neuroprotection was observed in the hippocampus. Although no significant change in rCBF was found, S(+) ketamine restored the cortical HbO2 to preischemic values. These results indicate that S(+) ketamine in higher dosages can reduce neuronal damage in the cortex after cerebral ischemia, possibly by improving the ratio of oxygen supply to consumption in the postischemic tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Post-ischemic diazepam does not reduce hippocampal CA1 injury and does not improve hypothermic neuroprotection after forebrain ischemia in gerbils.

The hippocampal CA1 sector is especially vulnerable to brief forebrain ischemia. Excitotoxicity is widely thought to contribute to this cell death. Accordingly, drugs that presumably counteract excitotoxicity, such as GABAergic agonists, have been repeatedly tested and found to reduce CA1 cell loss. Post-ischemic diazepam reduces CA1 injury. However, diazepam also causes hypothermia, which by i...

متن کامل

Neuroprotection by ketamine: a review of the experimental and clinical evidence.

A C h EUROPROTECTION MAY BE DEFINED AS the “prevention or amelioration of neuronal damage evidenced by bnormalities in cerebral metabolism, histopathology or neuroogic function occurring after a hypoxic or an ischemic event.”1 hus, the prevention of cerebral ischemia and the recovery of eural tissue that already has sustained an ischemic insult epresent essential goals of neuroprotection. Neuro...

متن کامل

Intracerebroventricular propofol is neuroprotective against transient global ischemia in rats: extracellular glutamate level is not a major determinant.

Excessive glutamate accumulation in extracellular space due to ischemia in the central nervous system (CNS) is believed to initiate the cascade toward irreversible neuronal damage. An intravenous general anesthetic, propofol (2,6-diisopropylphenol) has been implicated to be neuroprotective against cerebral ischemia. The purpose of this study was to test the hypothesis that intracerebroventricul...

متن کامل

Drug-induced neuroprotection from global ischemia is associated with prevention of persistent but not transient activation of nuclear factor-kappaB in rats.

BACKGROUND AND PURPOSE Nuclear factor-kappaB (NF-kappaB) is an oxidative stress responsive transcription factor that is transiently activated in most forebrain neurons in response to transient global ischemia. However, in hippocampal CA1 neurons destined to die, NF-kappaB remains persistently activated. The present study was performed to determine whether an antioxidant (LY231617) that afforded...

متن کامل

Ketamine and thiopental sodium: individual and combined neuroprotective effects on cortical cultures exposed to NMDA or nitric oxide.

BACKGROUND An N-methyl-D-aspartate (NMDA) blocker, ketamine, has been shown to be neuroprotective both in vivo and in vitro. However, ketamine is not commonly recommended for use in patients suffering from cerebral ischaemia because of its adverse neurological effects. We hypothesized that combined administration of ketamine and thiopental sodium (TPS) would be highly effective in protecting ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research

دوره 904 2  شماره 

صفحات  -

تاریخ انتشار 2001